4. Guideline Values

4.1. Introduction

The human ear and lower auditory system continuously receive stimuli from the world around us. However, this does not mean that all the acoustical inputs are necessarily disturbing or have harmful effects. This is because the auditory nerve provides activating impulses to the brain that enable us to regulate the vigilance and wakefulness necessary for optimal performance. On the other hand, there are scientific reports that a completely silent world can have harmful effects, because of sensory deprivation. Thus, both too little sound and too much sound can be harmful. For this reason, people should have the right to decide for themselves the quality of the acoustical environment they live in.

Exposure to noise from various sources is most commonly expressed as the average sound pressure level over a specific time period, such as 24 hours. This means that identical average sound levels for a given time period could be derived from either a large number of sound events with relatively low, almost inaudible levels, or from a few events with high sound levels. This technical concept does not fully agree with common experience on how environmental noise is experienced, or with the neurophysiological characteristics of the human receptor system.

Human perception of the environment through vision, hearing, touch, smell and taste is characterized by a good discrimination of stimulus intensity differences, and by a decaying response to a continuous stimulus (adaptation or habituation). Single sound events cannot be discriminated if the interval between events drops below a threshold value; if this occurs, the sound is interpreted as continuous. These characteristics are linked to survival, since new and different stimuli with low probability and high information value indicate warnings. Thus, when assessing the effects of environmental noise on people it is relevant to consider the importance of the background noise level, the number of events, and the noise exposure level independently.

Community noise studies have traditionally considered noise annoyance from single specific sources such as aircraft, road traffic or railways. In recent years, efforts have been made to compare the results from road traffic, aircraft and railway surveys. Data from a number of sources show that aircraft noise is more annoying than road traffic noise, which, in turn, is more annoying than railway noise. However, there is not a clear understanding of the mechanisms that create these differences. Some populations may also be at greater risk for the harmful effects of noise. Young children (especially during language acquisition), the blind, and perhaps fetuses are examples of such populations. There are no definite conclusions on this topic, but the reader should be alerted that guidelines in this report are developed for the population at large; guidelines for potentially more vulnerable groups are addressed only to a limited extent.

In the following, guideline values are summarized with regard to specific environments and effects. For each environment and situation, the guideline values take into consideration the identified health effects and are set, based on the lowest levels of noise that affect health (critical health effect). Guideline values typically correspond to the lowest effect level for general populations, such as those for indoor speech intelligibility. By contrast, guideline values for annoyance have been set at 50 or 55 dBA, representing daytime levels below which a majority of
the adult population will be protected from becoming moderately or seriously annoyed, respectively.

In these Guidelines for Community Noise only guideline values are presented. These are essentially values for the onset of health effects from noise exposure. It would have been preferred to establish guidelines for exposure-response relationships. Such relationships would indicate the effects to be expected if standards were set above the WHO guideline values and would facilitate the setting of standards for sound pressure levels (noise immission standards). However, exposure-response relationships could not be established as the scientific literature is very limited. The best-studied exposure-response relationship is that between \(L_{dn} \) and annoyance (WHO 1995a; Berglund & Lindvall 1995; Miedema & Vos 1998). Even the most recent relationships between integrated noise levels and the percentage of highly or moderately annoyed people are still being scrutinized. The results of a forthcoming meta-analysis are expected to be published in the near future (Miedema, personal communication).

4.2. Specific Effects

4.2.1. Interference with communication

Noise tends to interfere with auditory communication, in which speech is a most important signal. However, it is also vital to be able to hear alarming and informative signals such as doorbells, telephone signals, alarm clocks, fire alarms etc., as well as sounds and signals involved in occupational tasks. The effects of noise on speech discrimination have been studied extensively and deal with this problem in lexical terms (mostly words but also sentences). For communication distances beyond a few metres, speech interference starts at sound pressure levels below 50 dB for octave bands centered on the main speech frequencies at 500, 1 000 and 2 000 Hz. It is usually possible to express the relationship between noise levels and speech intelligibility in a single diagram, based on the following assumptions and empirical observations, and for speaker-to-listener distance of about 1 m:

a. Speech in relaxed conversation is 100% intelligible in background noise levels of about 35 dBA, and can be understood fairly well in background levels of 45 dBA.

b. Speech with more vocal effort can be understood when the background sound pressure level is about 65 dBA.

A majority of the population belongs to groups sensitive to interference with speech perception. Most sensitive are the elderly and persons with impaired hearing. Even slight hearing impairments in the high-frequency range may cause problems with speech perception in a noisy environment. From about 40 years of age, people demonstrate impaired ability to interpret difficult, spoken messages with low linguistic redundancy, when compared to people aged 20–30 years. It has also been shown that children, before language acquisition has been completed, have more adverse effects than young adults to high noise levels and long reverberation times.

For speech outdoors and for moderate distances, the sound level drops by approximately 6 dB for a doubling of the distance between speaker and listener. This relationship is also applicable to
indoor conditions, but only up to a distance of about 2 m. Speech communication is affected also by the reverberation characteristics of the room, and reverberation times beyond 1 s can produce a loss in speech discrimination. A longer reverberation time combined with background noise makes speech perception still more difficult.

Speech signal perception is of paramount importance, for example, in classrooms or conference rooms. To ensure any speech communication, the signal-to-noise relationship should exceed zero dB. But when listening to complicated messages (at school, listening to foreign languages, telephone conversation) the signal-to-noise ratio should be at least 15 dB. With a voice level of 50 dBA (at 1 m distance this corresponds on average to a casual voice level in both women and men), the background level should not exceed 35 dBA. This means that in classrooms, for example, one should strive for as low background levels as possible. This is particularly true when listeners with impaired hearing are involved, for example, in homes for the elderly. Reverberation times below 1 s are necessary for good speech intelligibility in smaller rooms; and even in a quiet environment a reverberation time below 0.6 s is desirable for adequate speech intelligibility for sensitive groups.

4.2.2. Noise-induced hearing impairment

The ISO Standard 1999 (ISO 1990) gives a method of calculating noise-induced hearing impairment in populations exposed to all types of occupational noise (continuous, intermittent, impulse). However, noise-induced hearing impairment is by no means restricted to occupational situations alone. High noise levels can also occur in open-air concerts, discotheques, motor sports, shooting ranges, and from loudspeakers or other leisure activities in dwellings. Other loud noise sources, such as music played back in headphones and impulse noise from toys and fireworks, are also important. Evidence strongly suggests that the calculation method from ISO Standard 1999 for occupational noise (ISO 1990) should also be used for environmental and leisure time noise exposures. This implies that long term exposure to $\text{L}_{\text{Aeq},24h}$ of up to 70 dBA will not result in hearing impairment. However, given the limitations of the various underlying studies, care should be taken with respect to the following:

a. Data from animal experiments indicate that children may be more vulnerable in acquiring noise-induced hearing impairment than adults.

b. At very high instantaneous sound pressure levels mechanical damage to the ear may occur (Hanner & Axelsson 1988). Occupational limits are set at peak sound pressure levels of 140 dBA (EU 1986a). For adults, this same limit is assumed to be in order for exposure to environmental and leisure time noise. In the case of children, however, considering their habits while playing with noisy toys, peak sound pressure levels should never exceed 120 dBA.

c. For shooting noise with $\text{L}_{\text{Aeq},24h}$ over 80 dB, studies on temporary threshold shift suggest there is the possibility of an increased risk for noise-induced hearing impairment (Smoorenburg 1998).
d. The risk for noise-induced hearing impairment increases when noise exposure is combined with vibrations, ototoxic drugs or chemicals (Fechter 1999). In these circumstances, long-term exposure to LAeq,24h of 70 dB may induce small hearing impairments.

e. It is uncertain whether the relationships in ISO Standard 1999 (ISO 1990) are applicable to environmental sounds having a short rise time. For example, in the case of military low-altitude flying areas (75–300 m above ground) LAmax values of 110–130 dB occur within seconds after onset of the sound.

In conclusion, dose-response data are lacking for the general population. However, judging from the limited data for study groups (teenagers, young adults and women), and on the assumption that time of exposure can be equated with sound energy, the risk for hearing impairment would be negligible for LAeq,24h values of 70 dB over a lifetime. To avoid hearing impairment, impulse noise exposures should never exceed a peak sound pressure of 140 dB peak in adults, and 120 dB in children.

4.2.3. Sleep disturbance effects

Electrophysiological and behavioral methods have demonstrated that both continuous and intermittent noise indoors lead to sleep disturbance. The more intense the background noise, the more disturbing is its effect on sleep. Measurable effects on sleep start at background noise levels of about 30 dB LAeq. Physiological effects include changes in the pattern of sleep stages, especially a reduction in the proportion of REM sleep. Subjective effects have also been identified, such as difficulty in falling asleep, perceived sleep quality, and adverse after-effects such as headache and tiredness. Sensitive groups mainly include elderly persons, shift workers and persons with physical or mental disorders.

Where noise is continuous, the equivalent sound pressure level should not exceed 30 dBA indoors, if negative effects on sleep are to be avoided. When the noise is composed of a large proportion of low-frequency sounds a still lower guideline value is recommended, because low-frequency noise (e.g. from ventilation systems) can disturb rest and sleep even at low sound pressure levels. It should be noted that the adverse effect of noise partly depends on the nature of the source. A special situation is for newborns in incubators, for which the noise can cause sleep disturbance and other health effects.

If the noise is not continuous, LAmax or SEL are used to indicate the probability of noise-induced awakenings. Effects have been observed at individual LAmax exposures of 45 dB or less. Consequently, it is important to limit the number of noise events with a LAmax exceeding 45 dB. Therefore, the guidelines should be based on a combination of values of 30 dB LAeq,8h and 45 dB LAmax. To protect sensitive persons, a still lower guideline value would be preferred when the background level is low. Sleep disturbance from intermittent noise events increases with the maximum noise level. Even if the total equivalent noise level is fairly low, a small number of noise events with a high maximum sound pressure level will affect sleep.
Therefore, to avoid sleep disturbance, guidelines for community noise should be expressed in terms of equivalent sound pressure levels, as well as LAmax/SEL and the number of noise events. Measures reducing disturbance during the first part of the night are believed to be the most effective for reducing problems in falling asleep.

4.2.4. Cardiovascular and psychophysiological effects

Epidemiological studies show that cardiovascular effects occur after long-term exposure to noise (aircraft and road traffic) with LAeq,24h values of 65–70 dB. However, the associations are weak. The association is somewhat stronger for ischaemic heart disease than for hypertension. Such small risks are important, however, because a large number of persons are currently exposed to these noise levels, or are likely to be exposed in the future. Other possible effects, such as changes in stress hormone levels and blood magnesium levels, and changes in the immune system and gastro-intestinal tract, are too inconsistent to draw conclusions. Thus, more research is required to estimate the long-term cardiovascular and psychophysiological risks due to noise. In view of the equivocal findings, no guideline values can be given.

4.2.5. Mental health effects

Studies that have examined the effects of noise on mental health are inconclusive and no guideline values can be given. However, in noisy areas, it has been observed that there is an increased use of prescription drugs such as tranquilizers and sleeping pills, and an increased frequency of psychiatric symptoms and mental hospital admissions. This strongly suggests that adverse mental health effects are associated with community noise.

4.2.6. Effects on performance

The effects of noise on task performance have mainly been studied in the laboratory and to some extent in work situations. But there have been few, if any, detailed studies on the effects of noise on human productivity in community situations. It is evident that when a task involves auditory signals of any kind, noise at an intensity sufficient to mask or interfere with the perception of these signals will also interfere with the performance of the task. A novel event, such as the start of an unfamiliar noise, will also cause distraction and interfere with many kinds of tasks. For example, impulsive noises such as sonic booms can produce disruptive effects as the result of startle responses; and these types of responses are more resistant to habituation.

Mental activities involving high load in working memory, such as sustained attention to multiple cues or complex analysis, are all directly sensitive to noise and performance suffers as a result. Some accidents may also be indicators of noise-related effects on performance. In addition to the direct effects on performance, noise also has consistent after-effects on cognitive performance with tasks such as proof-reading, and on persistence with challenging puzzles. In contrast, the performance of tasks involving either motor or monotonous activities is not always degraded by noise.

Chronic exposure to aircraft noise during early childhood appears to damage reading acquisition.
Evidence indicates that the longer the exposure, the greater the damage. Although there is insufficient information on these effects to set specific guideline values, it is clear that day-care centres and schools should not be located near major noise sources, such as highways, airports and industrial sites.

4.2.7. Annoyance responses

The capacity of a noise to induce annoyance depends upon many of its physical characteristics, including its sound pressure level and spectral characteristics, as well as the variations of these properties over time. However, annoyance reactions are sensitive to many non-acoustical factors of social, psychological or economic nature, and there are also considerable differences in individual reactions to the same noise. Dose-response relations for different types of traffic noise (air, road and railway) clearly demonstrate that these noises can cause different annoyance effects at equal L\text{Aeq,24h} values. And the same type of noise, such as that found in residential areas around airports, can also produce different annoyance responses in different countries.

The annoyance response to noise is affected by several factors, including the equivalent sound pressure level and the highest sound pressure level of the noise, the number of such events, and the time of day. Methods for combining these effects have been extensively studied. The results are not inconsistent with the simple, physically based equivalent energy theory, which is represented by the L\text{Aeq} noise index.

Annoyance to community noise varies with the type of activity producing the noise. Speech communication, relaxation, listening to radio and TV are all examples of noise-producing activities. During the daytime, few people are seriously annoyed by activities with L\text{Aeq} levels below 55 dB; or moderately annoyed with L\text{Aeq} levels below 50 dB. Sound pressure levels during the evening and night should be 5–10 dB lower than during the day. Noise with low-frequency components require even lower levels. It is emphasized that for intermittent noise it is necessary to take into account the maximum sound pressure level as well as the number of noise events. Guidelines or noise abatement measures should also take into account residential outdoor activities.

4.2.8. Effects on social behaviour

The effects of environmental noise may be evaluated by assessing the extent to which it interferes with different activities. For many community noises, interference with rest, recreation and watching television seem to be the most important issues. However, there is evidence that noise has other effects on social behaviour: helping behaviour is reduced by noise in excess of 80 dBA; and loud noise increases aggressive behavior in individuals predisposed to aggressiveness. There is concern that schoolchildren exposed to high levels of chronic noise could be more susceptible to helplessness. Guidelines on these issues must await further research.
4.3. Specific Environments

Noise measures based solely on LAeq values do not adequately characterize most noise environments and do not adequately assess the health impacts of noise on human well-being. It is also important to measure the maximum noise level and the number of noise events when deriving guideline values. If the noise includes a large proportion of low-frequency components, values even lower than the guideline values will be needed, because low-frequency components in noise may increase the adverse effects considerably. When prominent low-frequency components are present, measures based on A-weighting are inappropriate. However, the difference between dBC (or dBlin) and dBA will give crude information about the presence of low-frequency components in noise. If the difference is more than 10 dB, it is recommended that a frequency analysis of the noise be performed.

4.3.1. Dwellings

In dwellings, the critical effects of noise are on sleep, annoyance and speech interference. To avoid sleep disturbance, indoor guideline values for bedrooms are 30 dB LAeq for continuous noise and 45 dB LAm for single sound events. Lower levels may be annoying, depending on the nature of the noise source. The maximum sound pressure level should be measured with the instrument set at “Fast”.

To protect the majority of people from being seriously annoyed during the daytime, the sound pressure level on balconies, terraces and outdoor living areas should not exceed 55 dB LAeq for a steady, continuous noise. To protect the majority of people from being moderately annoyed during the daytime, the outdoor sound pressure level should not exceed 50 dB LAeq. These values are based on annoyance studies, but most countries in Europe have adopted 40 dB LAeq as the maximum allowable level for new developments (Gottlob 1995). Indeed, the lower value should be considered the maximum allowable sound pressure level for all new developments whenever feasible.

At night, sound pressure levels at the outside façades of the living spaces should not exceed 45 dB LAeq and 60 dB LAm, so that people may sleep with bedroom windows open. These values have been obtained by assuming that the noise reduction from outside to inside with the window partly open is 15 dB.

4.3.2. Schools and preschools

For schools, the critical effects of noise are on speech interference, disturbance of information extraction (e.g. comprehension and reading acquisition), message communication and annoyance. To be able to hear and understand spoken messages in classrooms, the background sound pressure level should not exceed 35 dB LAeq during teaching sessions. For hearing impaired children, an even lower sound pressure level may be needed. The reverberation time in the classroom should be about 0.6 s, and preferably lower for hearing-impaired children. For assembly halls and cafeterias in school buildings, the reverberation time should be less than 1 s. For outdoor playgrounds, the sound pressure level of the noise from external sources should not exceed 55 dB LAeq, the same value given for outdoor residential areas in daytime.
For preschools, the same critical effects and guideline values apply as for schools. In bedrooms in preschools during sleeping hours, the guideline values for bedrooms in dwellings should be used.

4.3.3. Hospitals

For most spaces in hospitals, the critical effects of noise are on sleep disturbance, annoyance and communication interference, including interference with warning signals. The LAmax of sound events during the night should not exceed 40 dB indoors. For wardrooms in hospitals, the guideline values indoors are 30 dB LAeq, together with 40 dB LAmax during the night. During the day and evening the guideline value indoors is 30 dB LAeq. The maximum level should be measured with the instrument set at “Fast”.

Since patients have less ability to cope with stress, the equivalent sound pressure level should not exceed 35 dB LAeq in most rooms in which patients are being treated or observed. Particular attention should be given to the sound pressure levels in intensive care units and operating theatres. Sound inside incubators may result in health problems, including sleep disturbance, and may lead to hearing impairment in neonates. Guideline values for sound pressure levels in incubators must await future research.

4.3.4. Ceremonies, festivals and entertainment events

In many countries, there are regular ceremonies, festivals and other entertainment to celebrate life events. Such events typically produce loud sounds including music and impulsive sounds. There is widespread concern about the effect of loud music and impulse sounds on young people who frequently attend concerts, discotheques, video arcades, cinemas, amusement parks and spectator events, etc. The sound pressure level is typically in excess of 100 dB LAeq. Such a noise exposure could lead to significant hearing impairment after frequent attendance.

Noise exposure for employees of these venues should be controlled by established occupational standards. As a minimum, the same standards should apply to the patrons of these premises. Patrons should not be exposed to sound pressure levels greater than 100 dB LAeq during a 4-h period, for at most four times per year. To avoid acute hearing impairment the LAmax should always be below 110 dB.

4.3.5. Sounds through headphones

To avoid hearing impairment in both adults and children from music and other sounds played back in headphones, the LAeq,24h should not exceed 70 dB. This implies that for a daily one-hour exposure the LAeq should not exceed 85 dB. The exposures are expressed in free-field equivalent sound pressure levels. To avoid acute hearing impairment, the LAmax should always be below 110 dB.

4.3.6. Impulsive sounds from toys, fireworks and firearms
To avoid acute mechanical damage to the inner ear, adults should never be exposed to more than 140 dB peak sound pressure. To account for the vulnerability in children, the peak sound pressure level produced by toys should not surpass 120 dB, measured close to the ears (100 mm). To avoid acute hearing impairment, L_{Amax} should always be below 110 dB.

4.3.7. Parkland and conservation areas

Existing large quiet outdoor areas should be preserved and the signal-to-noise ratio kept low.

4.4. WHO Guideline Values

The WHO guideline values in Table 4.1 are organized according to specific environments. When multiple adverse health effects are identified for a given environment, the guideline values are set at the level of the lowest adverse health effect (the critical health effect). An adverse health effect of noise refers to any temporary or long-term deterioration in physical, psychological or social functioning that is associated with noise exposure. The guideline values represent the sound pressure levels that affect the most exposed receiver in the listed environment.

The time base for L_{Aeq} for “daytime” and “night-time” is 16 h and 8 h, respectively. No separate time base is given for evenings alone, but typically, guideline value should be 5 –10 dB lower than for a 12 h daytime period. Other time bases are recommended for schools, preschools and playgrounds, depending on activity.

The available knowledge of the adverse effects of noise on health is sufficient to propose guideline values for community noise for the following:

- a. Annoyance.
- b. Speech intelligibility and communication interference.
- c. Disturbance of information extraction.
- d. Sleep disturbance.
- e. Hearing impairment.

The different critical health effects are relevant to specific environments, and guideline values for community noise are proposed for each environment. These are:

- a. Dwellings, including bedrooms and outdoor living areas.
- b. Schools and preschools, including rooms for sleeping and outdoor playgrounds.
- c. Hospitals, including ward and treatment rooms.
- d. Industrial, commercial shopping and traffic areas, including public addresses, indoors and outdoors.
- e. Ceremonies, festivals and entertainment events, indoors and outdoors.
- f. Music and other sounds through headphones.
- g. Impulse sounds from toys, fireworks and firearms.
- h. Outdoors in parkland and conservation areas.
It is not enough to characterize the noise environment in terms of noise measures or indices based only on energy summation (e.g. LAeq), because different critical health effects require different descriptions. Therefore, it is important to display the maximum values of the noise fluctuations, preferably combined with a measure of the number of noise events. A separate characterization of noise exposures during night-time would be required. For indoor environments, reverberation time is also an important factor. If the noise includes a large proportion of low frequency components, still lower guideline values should be applied.

Supplementary to the guideline values given in Table 4.1, precautionary recommendations are given in Section 4.2 and 4.3 for vulnerable groups, and for noise of a certain character (e.g. low-frequency components, low background noise), respectively. In Section 3.10, information is given regarding which critical effects and specific environments are considered relevant for vulnerable groups, and what precautionary noise protection would be needed in comparison to the general population.
Table 4.1: Guideline values for community noise in specific environments.

<table>
<thead>
<tr>
<th>Specific environment</th>
<th>Critical health effect(s)</th>
<th>LAeq [dB]</th>
<th>Time base [hours]</th>
<th>LAmax, fast [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor living area</td>
<td>Serious annoyance, daytime and evening Moderate annoyance, daytime and evening</td>
<td>55</td>
<td>16</td>
<td>-</td>
</tr>
<tr>
<td>Dwelling, indoors</td>
<td>Speech intelligibility and moderate annoyance, daytime and evening Sleep disturbance, night-time</td>
<td>35</td>
<td>16</td>
<td>45</td>
</tr>
<tr>
<td>Inside bedrooms</td>
<td>Sleep disturbance, window open (outdoor values)</td>
<td>45</td>
<td>8</td>
<td>60</td>
</tr>
<tr>
<td>School class rooms and pre-schools, indoors</td>
<td>Speech intelligibility, disturbance of information extraction, message communication</td>
<td>35</td>
<td>during class</td>
<td>-</td>
</tr>
<tr>
<td>Pre-school Bedrooms, indoors</td>
<td>Sleep disturbance</td>
<td>30</td>
<td>sleeping-time</td>
<td>45</td>
</tr>
<tr>
<td>School, playground outdoor</td>
<td>Annoyance (external source)</td>
<td>55</td>
<td>during play</td>
<td>-</td>
</tr>
<tr>
<td>Hospital, ward rooms, indoors</td>
<td>Sleep disturbance, night-time Sleep disturbance, daytime and evenings</td>
<td>30</td>
<td>8</td>
<td>40</td>
</tr>
<tr>
<td>Hospitals, treatment rooms, indoors</td>
<td>Interference with rest and recovery</td>
<td>#1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial, commercial, shopping and traffic areas, indoors and Outdoors</td>
<td>Hearing impairment</td>
<td>70</td>
<td>24</td>
<td>110</td>
</tr>
<tr>
<td>Ceremonies, festivals and entertainment events</td>
<td>Hearing impairment (patrons:<5 times/year)</td>
<td>100</td>
<td>4</td>
<td>110</td>
</tr>
<tr>
<td>Public addresses, indoors and outdoors</td>
<td>Hearing impairment</td>
<td>85</td>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>Music through headphones/Earphones</td>
<td>Hearing impairment (free-field value)</td>
<td>85 #4</td>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>Impulse sounds from toys, fireworks and firearms</td>
<td>Hearing impairment (adults)</td>
<td>-</td>
<td>-</td>
<td>140 #2</td>
</tr>
<tr>
<td></td>
<td>Hearing impairment (children)</td>
<td>-</td>
<td>-</td>
<td>120 #2</td>
</tr>
<tr>
<td>Outdoors in parkland and conservation areas</td>
<td>Disruption of tranquillity</td>
<td>#3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#1: as low as possible;
#2: peak sound pressure (not LAmax, fast), measured 100 mm from the ear;
#3: existing quiet outdoor areas should be preserved and the ratio of intruding noise to natural background sound should be kept low;
#4: under headphones, adapted to free-field values